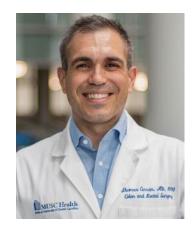


ERAS (Enhanced Recovery After Surgery) Improving Opioid Stewardship Across the Surgical Continuum

Health Services Advisory Group (HSAG)

Tuesday, May 23, 2023

Learning Objectives


- Gain insight on the implementation of the ERAS program at the Medical University of South Carolina (MUSC).
- Hear about its impact on the reduction of patient's hospital stays and the use of PCAs (post-controlled analgesia) following colorectal surgeries and other procedures.
- Understand the importance of implementing opioid-free surgery to curb opioid use and potential addiction for patients.

Our Guest speakers

Dr. Mark Lockett, MD
Associate Professor of
Surgery at the Medical
University of South
Carolina

MPH, FACS, FASCRS

Assistant Professor of
Surgery, Division of Colon
and Rectal Surgery

Dr. Thomas Curran, MD,

MD, FACS

Chief of GI and
Laparoscopic Surgery

Dr. Katherine Morgan,

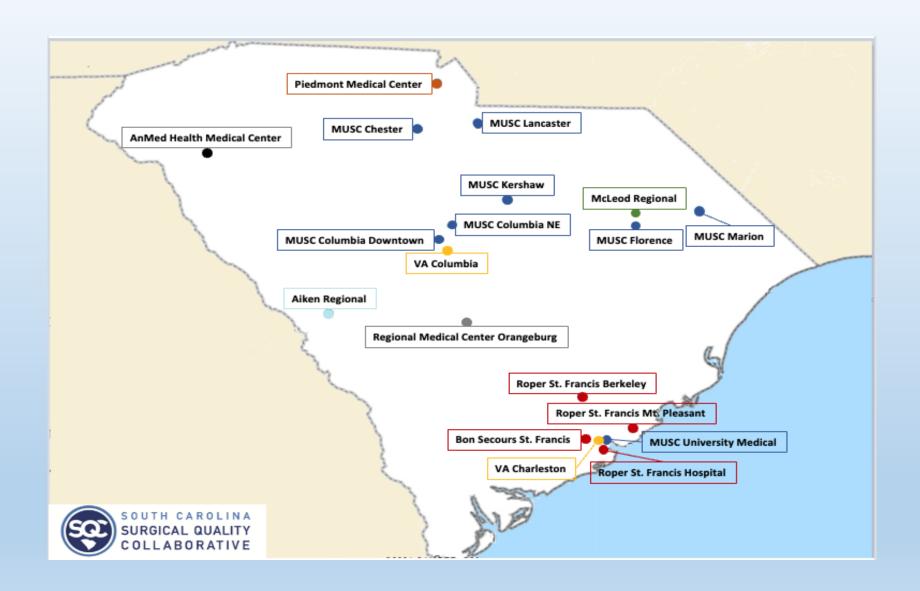
South Carolina Surgical Quality Collaborative

Mark Lockett, MD

March 8, 2023

South Carolina Surgical Quality Collaborative (SCSQC)

- Established in 2015
- Joint effort to improve the quality and value of surgical care in South Carolina
- Originally funded by the Blue Cross Blue Shield of South Carolina Foundation and the Duke Endowment



Key Components of the SCSQC

- Continuous quality improvement utilizing actionable and reliable data
- Group learning through collaborative meetings
- Training the next generation of surgical leaders in quality improvement techniques
- Achieve measurable reductions in post-operative complications and lower general surgery costs

SCSQC Collaboration

SCSQC leaders have regular conference calls and face-to-face meetings with facility leaders

- Collaboration
- Disseminate information
- Review data
- Share best practices
- Learn from each other
- Shortens the learning curve for Quality Improvement projects

SCSQC Data Abstraction

- Web-based input of patient specific clinical data by trained abstractors
- Reliable, risk-adjusted outcomes, state comparators
- Surgeons and quality officials at each hospital have access to see their risk-adjusted outcomes compared to their deidentified peers
- Site specific data is not shared with other facilities or outside entities

General Surgery

- 1. Amputation
- 2. Bowel
- 3. Breast
- 4. Soft Tissue
- 5. Cholecystectomy

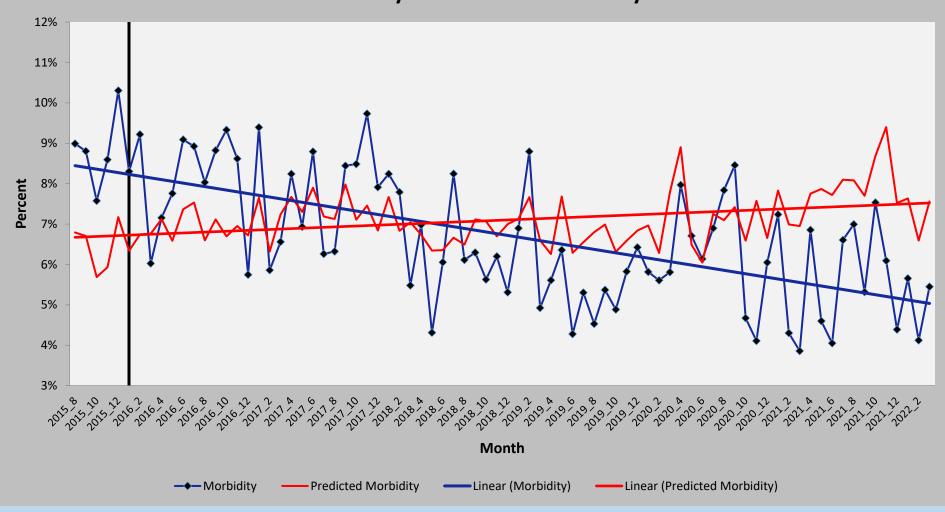
- 6. Colon
- 7. Endocrine
- 8. Hernia
- 9. Pancreas
- 10. Stomach

SCSQC Goals

- Achieve measurable outcomes of highest importance to patients, clinicians, and payors
- Decrease health disparities in South Carolina through reducing surgical morbidity and mortality
- Improve health care value for patients undergoing surgical procedures
- Deliver the highest quality care at the lowest cost
- Assure sustainability of the program

Colon Surgery Enhanced Recovery

Antibiotics, temperature / bowel prep, glucose / closing tray, gown change, wound protector / laparoscopic and OR time



Green – Colon bundle compliance rate Red – surgical site infection rate

The Amount Tablets	of Opioid	2018	2019	2020	2021	2022	p-value
Overall	N of Surgeries	1,118	5,884	5,016	4,116	3,477	
	Mean (STD)	22.9 (13.1)	19.2 (14.9)	13.6 (10.5)	12.2 (12.1)	11.4 (9.0)	<.0001
	Median	20	15	12	10	10	<.0001
Colon	N of Surgeries	293	1,459	1,218	1,169	929	
	Mean (STD)	24.3 (14.7)	19.8 (15.7)	13.7 (11.1)	12.9 (12.3)	12.3 (12.2)	<.0001
	Median	20	15	12	10	10	<.0001
Cholecystectomy	N of Surgeries	205	1,150	1,014	670	624	
	Mean (STD)	22.1 (11.7)	17.9 (12.5)	12.6 (7.0)	11.1 (9.2)	10.0 (4.7)	<.0001
	Median	20	15	12	10	10	<.0001
Hernia	N of Surgeries	225	1,204	1,071	989	928	
	Mean (STD)	23.9 (12.3)	20.3 (12.1)	14.0 (8.6)	11.4 (8.9)	10.7 (5.8)	<.0001
	Median	21	20	12	10	10	<.0001
Breast	N of Surgeries	161	821	820	564	380	
	Mean (STD)	19.4 (9.5)	14.9 (11.1)	10.3 (6.1)	8.8 (6.1)	8.2 (5.2)	<.0001
	Median	20	12	10	7	6	<.0001

Outcomes - Overall

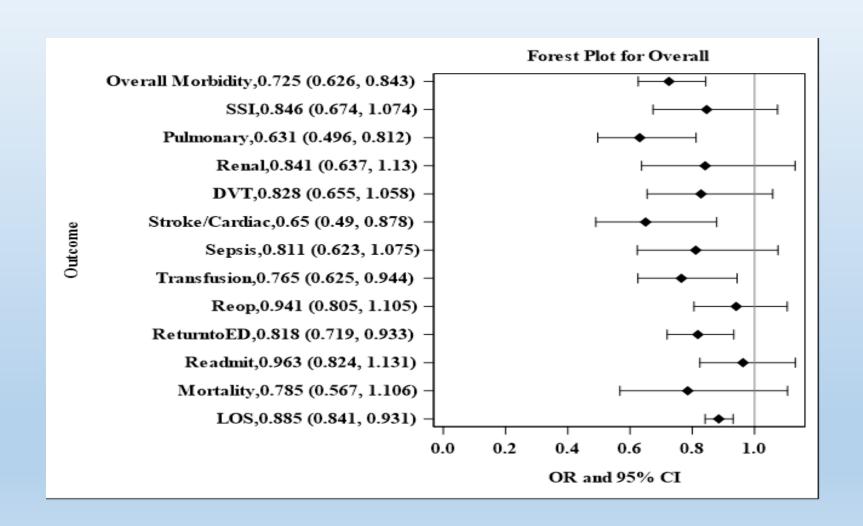
Overall	Time Frame Aug15-Jan16 (n=2968)	Time Frame Feb16-Mar22 (n=40673)	p-value
Morbidity (%)	8.76	6.56	-
SSI (%)	2.86	2.42	0.1281
Pulmonary (%)	2.86	1.69	<0.0001
Renal (%)	1.92	1.66	0.2902
DVT (%)	3.17	2.58	0.0528
Stroke/Cardiac (%)	2.06	1.38	0.0027
Sepsis (%)	2.12	1.61	0.0352
Transfusion (%)	4.68	3.55	0.0014
Reop (%)	6.74	5.92	0.0695
ReturntoED (%)	9.84	7.75	<.0001
Readmit (%)	6.30	6.02	0.5301
Mortality (%)	1.82	1.41	0.0677
LOS, Mean	3.75	3.42	0.0071
LOS, Median	1.52	1.45	0.0110

P-value <= 0.05;

0.05< P-value <= 0.10;

0.10< P-value < 0.20.

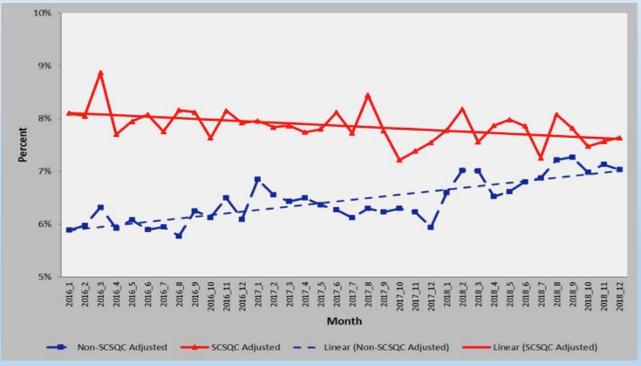
Outcomes-Non-Commercial


	Time Frame Aug15-Jan16	Time Frame Feb16-Mar22	
Non-Commercial	(n=1661)	(n=23572)	p-value
Morbidity (%)	11.50	8.40	<0.0001
SSI (%)	3.49	2.78	0.0900
Pulmonary (%)	4.21	2.32	<0.0001
Renal (%)	2.59	2.22	0.3249
DVT (%)	4.70	3.49	0.0106
Stroke/Cardiac (%)	3.13	2.04	0.0030
Sepsis (%)	2.59	2.10	0.1825
Transfusion (%)	7.10	4.87	<0.0001
Reop (%)	8.55	6.92	0.0123
ReturntoED (%)	11.08	9.22	0.0119
Readmit (%)	7.77	7.28	0.4576
Mortality (%)	3.01	2.16	0.0220
LOS, Mean	4.81	4.23	0.0003
LOS, Median	2.00	1.65	0.0032

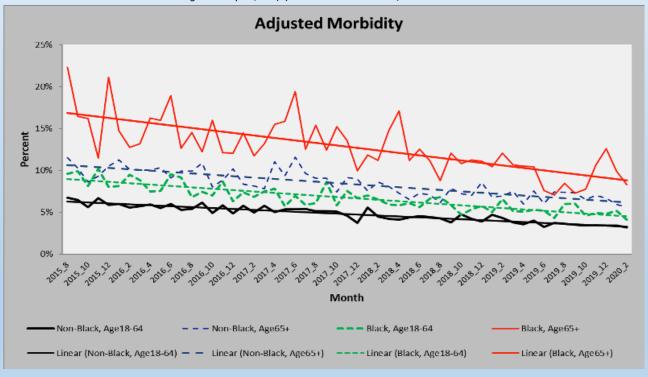
P-value <= 0.05;

0.05< P-value <= 0.10;

0.10< P-value < 0.20.

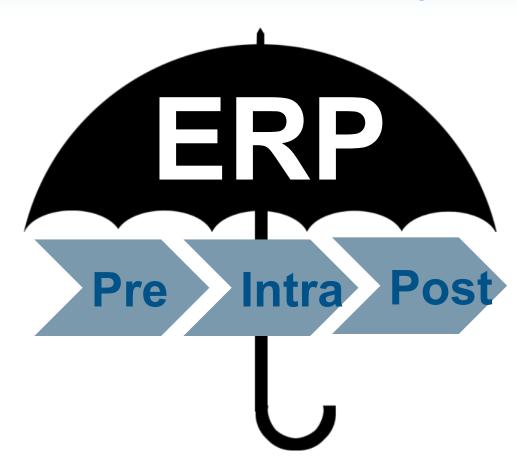

Multivariable Regression

Facilitated Regional Collaboration and In-Hospital Surgical Complication


J Am Coll Surg. 2021 Apr 1;234(4):536-543. doi: 10.1016/j.jamcollsurg.2020.11.025. Epub 2020 Dec 28.


Surgical Outcomes Improvement and Health Inequity in a Regional Quality Collaborative

J Am Coll Surg. 2022 Apr 1;234(4):607-614. doi: 10.1097/XCS.00000000000084



Goals & Objectives

- What is ERP and why is it important?
- How to implement ERP at your institution
- Application of ERP to special populations

Does my institution need ERP?

ERP principles: Minimization of variability

Carmichael JC, et al. Dis Colon Rectum. 2017

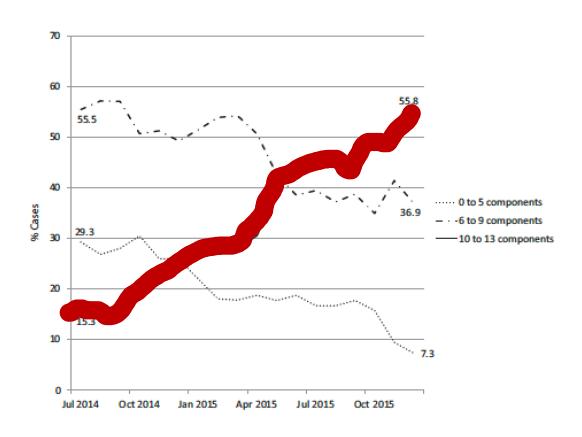
Which things fall under "ERP?"

ERP Involves changing expectations

ERP Involves changing expectations

Why ERP: National ata

Adherence to Enhanced Recovery Protocols in NSQIP ■ Low Adherence (0 to 5 components) and Association With Colectomy Outcomes Moderate Adherence (6 to 9 components) Julia R. Berian, MD, MS, *† Kristen A. Ban, MD, MS, †‡ Jason B. Liu, MD, MS, *† ■ High Adherence (10 to 13 components) Clifford Y. Ko, MD, MS, MSHS,†§ Liane S. Feldman, MD,¶ and Julie K. Thacker, MD|| 25% 20% A la carte ERP 15% doesn't work! NS 10% 5% 0% Prolonged LOS Serious Morbidity Readmission Anastomotic Leak lleus


or Mortality

ERP challenges: Buy in from everyone

Nursing Barriers	Subcategories	Mitigation Strategies	Responsible Parties
Adoption of EBPs	ERAS is an EBPs	 Integrate ERAS implementation as an annual strategic goal and align it appropriately with the additional nursing goals 	Chief nursing office Nursing directors Nursing managers
Nursing staffing	Leadership turnover	Create a culture of safety Manage nursing leadership priorities and include time dedicated to ERAS implementation Reward high performers	Chief nursing office Nursing directors
	Frontline staff turnover	1. Create a culture of safety 2. Manage the projects that frontline nurses are undertaking 3. Educate the "why" behind ERAS implementation 4. Reward high performers	Nursing manager Nursing educators
	Culture and behaviors	 Obtain buy-in for ERAS at the hospital and nursing leadership level (ie, chief nursing officer, chief executive officer, and assistant vice presidents) Support nursing leadership with time to dedicate to new EBP initiatives such as ERAS 	Chief nursing office Nursing directors Nursing managers
	Education	Create a consistent ERAS education pathway for nurses Create education plan for new and existing nursing staff	Nursing manager Nursing educators
Hospital resources		Create a business case for the role and its importance in patient outcomes to include return on investment	ERAS coordinator Project manager
	Wound ostomy nurses Data availability	Assess needs of organization Creating a role that oversees data Build ERAS-specific dashboards Publish ERAS process metrics Conduct weekly manual chart audits (first 8 wk of implementation) Publish monthly data updates Encourage organizational transparency in data sharing	Hospital leadership ERAS coordinator Nursing leadership Nursing educator

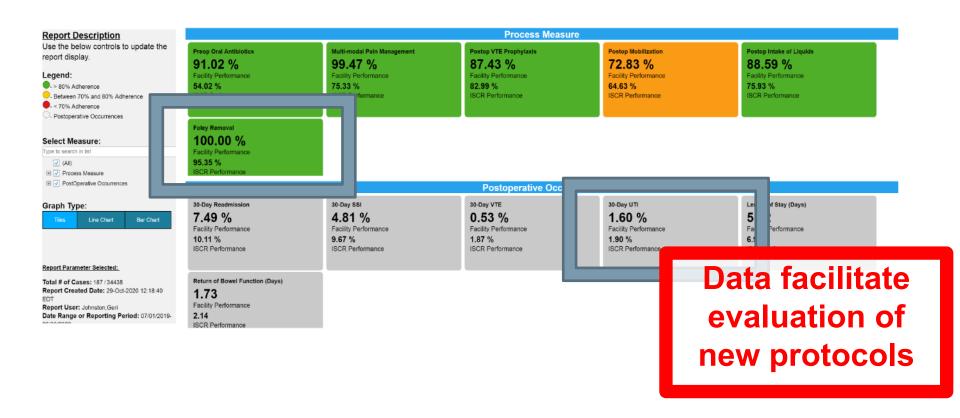
Culture change takes time

Berian JR, et al. Ann Surg. 2019

Institutional data: ERP and iterative improvement

MUSC experience: Early Foley catheter removal

ORIGINAL CONTRIBUTION


Early Urinary Catheter Removal Following Pelvic Colorectal Surgery: A Prospective, Randomized, Noninferiority Trial

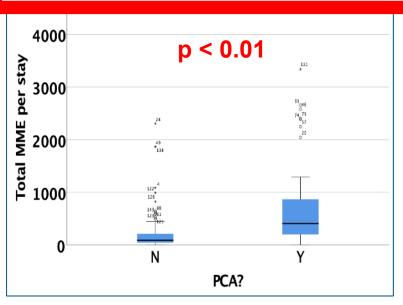
Devin N. Patel, M.D. • Seth I. Felder, M.D. • Michael Luu, M.P.H. • Timothy J. Daskivich, M.D. Karen N. Zaghiyan, M.D. • Phillip Fleshner, M.D.

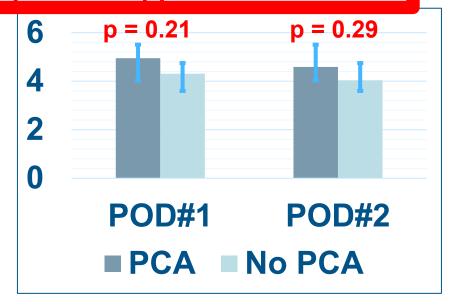
TABLE 2. Primary and secondary outcomes					
Variables	All (n = 142)	Early catheter removal (n = 71)	Standard catheter removal (n = 71)	р	
Acute urinary retention (%)	13 (9.2)	6 (8.5)	7 (9.9)	1.00	
PVR, mL	0 (0–50)	30 (0–50)	0 (0–50)	0.14	
Symptomatic UTI	8 (5.6)	0 (0)	8 (11.3)	0.01	
LOS, days	4 (3–7)	4 (3–6)	5 (4–7)		

MUSC data: Early Foley catheter removal

MUSC data: Opioid utilization

- Opioid usage prevalence
 - 1/25 Americans misused opioids in the last year¹
 - 16-33% of CRS patients with recent opioid use^{2,3}


- Opioid usage adverse effects in CRS
 - Increased complications², LOS²,
- www.hhs.gov/opioids
 Hassinge (Caronal Section)
 Costs^{2,3}
- 3. Cortez AR, et al. Surgery. 2019



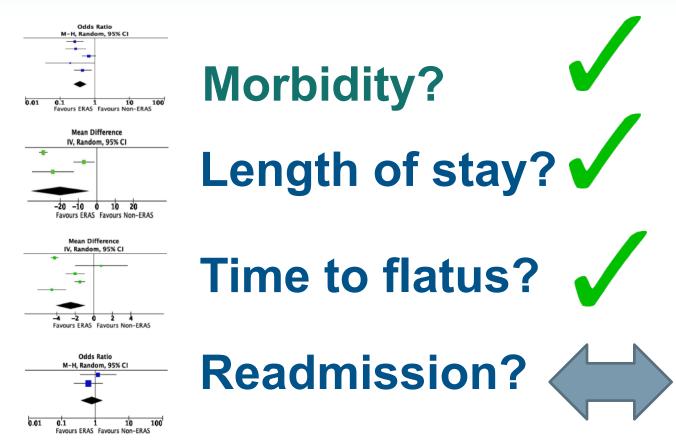
MUSC data PLUS: Avoidance of postop PCA


- Protocol change to omit routine postop PCA
 - Internal pharmacy data added to NSQIP/ISCR

Additional data elements expand QI opportunities

Do geriatric patients benefit from ERP?

- Age 65+: 16% of Americans¹ but HALF of all surgery in the US²
- Meta-analysis 2020³: 65+ undergoing colorectal surgery
 - RCT x 3, Cohort x 3
 - N = 1,174


www.census.go

Ostermann S, et al. Dis Colon Rectum. 2019

Tan JK, et al. Surg Endoscopy. 2020

Do geriatric patients benefit from ERP?

Tan JK, et al. Surg Endoscopy. 2020

ERP in non-elective surgery

- Non-elective = Common!
 - 17% of colectomy in ACS-NSQIP¹

- Feasible ?
 - N = 28; Compliance 57%²
 - Variable preop compliance

- . Ozathil DK, et al. J Surg Res. 2011
- 2. Roulin D, et al. World J Surg. 2014

Do non-elective patients benefit from ERP?

■ Morbidity^{1,2}

■ LOS^{1,2}

/

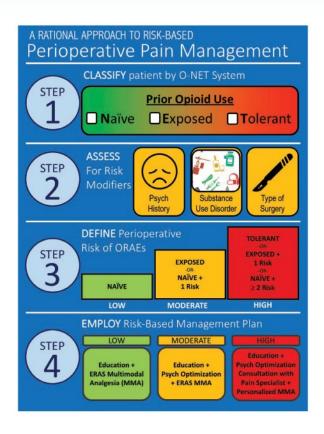
Cost²

- 1. Lohsiriwhat V, et al. World J Gastroenterol. 2014
- 2. Liska D, et al. Ann Surg. 2020

Do opioid tolerant patients benefit from ERP?

■ LOS¹

Inpatient MME¹



Outpatient rx¹

1. Cortez AR, et al. Surgery. 2019

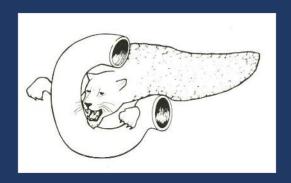
Analgesic planning for opioid tolerant patients

- Classify
- Assess
- Define
- Employ
 - ERP multi-modal analgesics
 - Even ketorolac!

1. Edwards DA, et al. Anesth Analg. 2019

Conclusions

- ERP works...for patients, surgeons, nurses, etc.
 - Improved bundle adherence = improved outcomes
 - Change takes time and "buy in"
- Institutional data facilitates local quality improvement initiatives
- ERP is important even in special populations


Questions & thank you!

currant@musc.edu
@thomascurran27

ERAS in Pancreas Surgery

Katy Morgan, MD
Professor, Head Division of HPB Surgery
Medical University of South Carolina
May 23, 2023

"It is worth emphasizing that the recovery rate in abdominal cases depends less on the individual ability of the surgeon than on any other single factor...The all important factor is the system, not the surgeon"

• Douglas Jolly 1941

ERAS vs "Fast-track"

- Fast-track protocols (1990s)
 - Surgeon driven
 - Postoperative pathways
 - Encourage early ambulation, feeding, discharge
- ERAS protocols (2000s)
 - Multidisciplinary
 - Include preop, intraop, and postop care
 - Reduce surgical stress

ERAS is Multidisciplinary

- Anesthesiologists
- Surgeons
- Intensivists
- Physician Assistants
- Nurse coordinators
- Ward nurses
- Clinic staff
- *Buy in is essential

ERAS is Multidisciplinary

Herding cats

MUSC Pancreas ERAS Protocol

Preoperative	Patient education Smoking cessation Prehabilitation exercise Individual nutritional assessment Immunomodulating nutritional supplementation Carbohydrate loading Pre-emptive antiemetics Adjunctive non-narcotic analgesics Regional anesthetic
Intraoperative**	Normothermia protocol Venous thromboembolism prophylaxis Antibiotic prophylaxis Wound protector **Goal directed fluid administration
Postoperative	Avoidance or early removal of nasogastric tube Avoidance or early removal of surgical drains Early removal of foley catheter Intravenous fluid restriction Early diet advancement Early ambulation

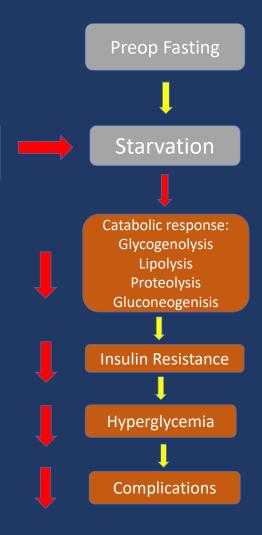
Preoperative elements

- Neoadjuvant prescription—cytotoxic therapy...deconditioning...sarcopenia
- Opportunity (Time) to optimize physiology
- Exercise, smoking cessation, nutrition, mindfulness
 - Sell Ann Surg 2020

Preoperative nutritional optimization

- Malnourished
- Nutritional assessment (RD)
- Pancreatic exocrine insufficiency (PEI)...Pancreatic enzyme replacement therapy (PERT)

Preoperative immunomodulating nutrition

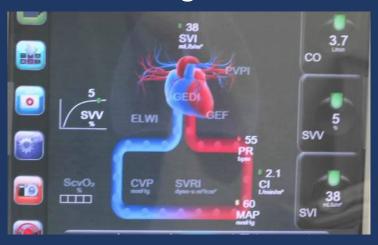

- Immune modulating supplement
 - Protein
 - Omega-3 fatty acids
 - Arginine, glutamine
 - Nucleotides
- 5 days preop
- Blunts inflammatory response from surgery
- Decreases postoperative infection rates (36%)
- Decreases length of stay
 - Marimuthu Ann Surg 2012
 - Yang Nutrients 2020

Preoperative carbohydrate loading

Carbohydrate

Loading

- Preop carb loading
- 3 hours p/t surgery
- Reduces time to return of GI fxn
- Preserves skeletal muscle mass
 - Noblett Colorectal Dis 2006



Intraoperative factors: SSI prevention

- Perioperative antibiotics (Zosyn)
 - Ellis Ann Surg 2023
- Wound protector
 - Bressan Ann Surg 2018
- Negative pressure wound therapy
 - Burkhart HPB 2017
- Minimize incision (laparoscopic, robotic)

Perioperative goal directed fluid management

- Intraoperative hemodynamic monitoring
 - Stroke volume variation
- IVF restriction postop
- Protocol directed fluid management

Perioperative goal directed fluid management

- Avoiding fluid overload
 - Tissue edema (delayed return of GI function, poor wound healing)
 - Hypertensive cardiac stress
 - Respiratory failure
- Euvolemia
 - Decreased postop complications
 - Decreased LOS
 - Vadarhan Proc Nutr Soc 2010

Postoperative elements: drain management

- Verona protocol
- Drain amylase POD1 <5000 U/L (NPV 98%)
- Early drain removal POD 3
 - decreases POPF, abdominal complications, pulmonary complications, median LOS, cost
 - Molinari Ann Surg 2007
 - Bassi Ann Surg 2010

Introduction of MUSC Pancreas ERAS protocol

Methods

- Retrospective review of prospective pancreas surgery database
- August 2012 to April 2015
- ERAS protocol was initiated October 2014
- "PreERAS" vs "ERAS"
- Preoperative, intraoperative and postoperative data were tabulated and compared
- Cost and length of stay data were obtained and analyzed from a hospital administrative database

Morgan JACS 2016

Results: Demographics

	Pre ERAS	ERAS	p
N	297	81	
Male (%)	138 (46%)	44 (54%)	NS
Mean age, years	54	54	NS
Mean BMI (kg/m2)	27.5	28.4	NS
Tobacco use (%)	126 (42%)	42 (52%)	NS
Mean albumin (g/dl)	3.6	3.6	NS

Preoperative Diagnosis

	Pre ERAS	ERAS	р
Pancreatic adenocarcinoma	37	14	NS
Cholangiocarcinoma	8	3	NS
Duodenal adenocarcinoma	5	1	NS
Ampullary adenocarcinoma	2	1	NS
IPMN	30	6	NS
Pancreatic neuroendocrine tumor	16	7	NS
Mucinous cystic neoplasm	5	1	NS
Serous cystadenoma	6	2	NS
Pancreatitis	176	42	NS
Other	12	4	NS

Intraoperative data

	Pre ERAS	ERAS	р
Mean EBL, cc	431	511	NS
Mean length of surgery, minutes	190	191	NS
Surgery performed			
Pancreatoduodenectomy	82	27	NS
Distal pancreatectomy	93	29	NS
Total pancreatectomy	48	11	NS
Lateral pancreaticojejunostomy	24	5	NS
Necrosectomy	21	3	NS
Transduodenal sphincteroplasty	22	2	NS
Other	7	4	NS

	Pre ERAS	ERAS	р
Overall complication, %	63	59	NS
Significant complication, %	25	21	NS
Wound infection, %	6	9	NS
Pneumonia, %	7	8	NS
Pancreatic fistula, %	26	28	NS
Pancreatic fistula, grade C, %	3	1	NS
Delayed gastric emptying, %	26	13	0.025
Mean Length of stay, days	9.2	7.4	0.0001
Mean ICU length of stay, days	1.85	1.16	NS
Readmission, %	29	32	NS
Mortality, 90 days, N	2	0	NS

	Pre ERAS	ERAS	р
Overall complication, %	63	59	NS
Significant complication*, %	25	21	NS
Wound infection, %	6	9	NS
Pneumonia, %	7	8	NS
Pancreatic fistula, %	26	28	NS
Pancreatic fistula, grade C, %	3	1	NS
Delayed gastric emptying, %	26	13	0.025
Mean Length of stay, days	9.2	7.4	0.0001
Mean ICU length of stay, days	1.85	1.16	NS
Readmission, %	29	32	NS
Mortality, 90 days, N	2	0	NS

	Pre ERAS	ERAS	р
Overall complication, %	63	59	NS
Severe complication, %	25	21	NS
Wound infection, %	6	9	NS
Pneumonia, %	7	8	NS
Pancreatic fistula, %	26	28	NS
Pancreatic fistula, grade C, %	3	1	NS
Delayed gastric emptying, %	26	13	0.025
Mean Length of stay, days	9.2	7.4	0.0001
Mean ICU length of stay, days	1.85	1.16	NS
Readmission, %	29	32	NS
Mortality, 90 days, N	2	0	NS

	Pre ERAS	ERAS	р
Overall complication, %	63	59	NS
Severe complication, %	25	21	NS
Wound infection, %	6	9	NS
Pneumonia, %	7	8	NS
Pancreatic fistula, %	26	28	NS
Pancreatic fistula, grade C, %	3	1	NS
Delayed gastric emptying, %	26	13	0.025
Mean Length of stay, days	9.2	7.4	0.0001
Mean ICU length of stay, days	1.85	1.16	NS
Readmission, %	29	32	NS
Mortality, 90 days, N	2	0	NS

	Pre ERAS	ERAS	р
Overall complication, %	63	59	NS
Severe complication, %	25	21	NS
Wound infection, %	6	9	NS
Pneumonia, %	7	8	NS
Pancreatic fistula, %	26	28	NS
Pancreatic fistula, grade C, %	3	1	NS
Delayed gastric emptying, %	26	13	0.025
Mean Length of stay, days	9.2	7.4	0.0001
Mean ICU length of stay, days	1.85	1.16	NS
Readmission, %	29	32	NS
Mortality, 90 days, N	2	0	NS

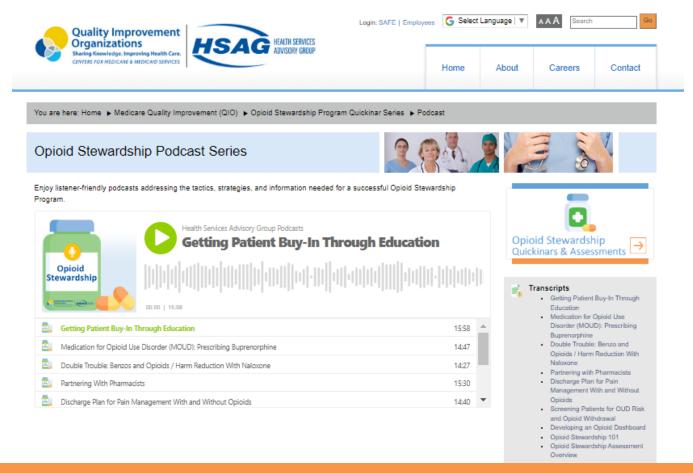
Hospital Cost

- PreERAS vs ERAS
 - •\$27387 vs \$23303, p<0.0001
- Cost savings \$4080

Conclusions

- ERAS protocols are effective in pancreatic surgery
- Improve efficiency (hospital length of stay, cost)
- Decrease morbidity (delayed gastric emptying)
- Safe (no increase in readmission rates, morbidity or mortality)

Discussion


- Multidisciplinary approach is fundamental
- Standardization is key
- Evidence based practice is essential
- "The all important factor is the system, not the surgeon"

Q&A

HSAG Tools and Resources | Podcast Series

https://www.hsag.com/osp-podcast

HSAG Tools and Resources

https://www.hsag.com/osp-resources

Continuing Education Credits

- Health Services Advisory Group, Inc., is the CE provider for this event. Provider approved by the California Board of Registered Nursing, Provider Number 16578, for 1 contact hour per training. Approved for 1 hour of CE credit by the California Nursing Home Administrator Program (NHAP), Provider Number 1729.
- New User Registration Link:
 - https://lmc.hshapps.com/register/default.aspx?ID=6b414cf1-98cd-45f9-a726d304e1eb3269
- Existing User Link:
 - https://lmc.hshapps.com/test/adduser.aspx?ID=6b414cf1-98cd-45f9-a726d304e1eb3269

This material was prepared by Health Services Advisory Group (HSAG), a Quality Innovation Network-Quality Improvement Organization (QIN-QIO) under contract with the Centers for Medicare & Medicaid Services (CMS), an agency of the U.S. Department of Health and Human Services (HHS). Views expressed in this material do not necessarily reflect the official views or policy of CMS or HHS, and any reference to a specific product or entity herein does not constitute endorsement of that product or entity by CMS or HHS. Publication No.QN-12SOW-XC-05232023-03

